题目连接:
Description
树是一种很常见的数据结构。
我们把N个点,N-1条边的连通无向图称为树。 若将某个点作为根,从根开始遍历,则其它的点都有一个前驱,这个树就成为有根树。 对于两个树T1和T2,如果能够把树T1的所有点重新标号,使得树T1和树T2完全相 同,那么这两个树是同构的。也就是说,它们具有相同的形态。 现在,给你M个有根树,请你把它们按同构关系分成若干个等价类。Input
第一行,一个整数M。
接下来M行,每行包含若干个整数,表示一个树。第一个整数N表示点数。接下来N 个整数,依次表示编号为1到N的每个点的父亲结点的编号。根节点父亲结点编号为0。Output
输出M行,每行一个整数,表示与每个树同构的树的最小编号。
Sample Input
4
4 0 1 1 2
4 2 0 2 3
4 0 1 1 1
4 0 1 2 3
Sample Output
1
1
3
1
Hint
【样例解释】
编号为1, 2, 4 的树是同构的。编号为3 的树只与它自身同构。
100% 的数据中,1 ≤ N, M ≤ 50。
题意
题解
从树的重心开始hash,因为重心最多两个。
然后找到树的最小表示就好了。
代码
#includeusing namespace std;const int maxn = 555;int f[maxn],son[maxn],n,mx;vector E[maxn];string h[maxn],h2[maxn],ha[maxn];void getroot(int x,int fa){ son[x]=1,f[x]=0; for(int i=0;i tmp)tmp=h[i]; } } return tmp;}int main(){ int q;scanf("%d",&q); for(int i=1;i<=q;i++) ha[i]=get(); for(int i=1;i<=q;i++){ for(int j=1;j<=i;j++){ if(ha[i]==ha[j]){ cout< <